4	Group 2 compo	unde can be	Lucad in a	aricultura to	noutralica a	oid coile and i	n modicino to	treat indigestion.
Ή.	GIOUD Z COIIDO	unus can be	useu in a	anculure to	neutranse a	da sons and i	n meaicine to	treat maidestion.

Which Group 2 compound is **not** suitable for either use?

- A $Mg(OH)_2$
- B MgSO₄
- C CaCO₃
- **D** CaO

Your answer						[1]
-------------	--	--	--	--	--	-----

2. The flowchart shows some reactions of barium and its compounds.

- Write balanced equations for Reaction 1 and Reaction 2.
- Identify the type of reaction in **Reaction 3**.

Reaction 1: equation		
Reaction 2: equation		
Reaction 3: type of reactio	n _	31
		31

3. Which compounds of magnesium can be used as 'antacids'?

A B C D	Chlorides Hydroxides Nitrates Sulfates				
Your	answer			[1]	
4(a).	This question is	s about periodicity and the reaction of som	ne Group 2 metals.		
Perio	dicity is the rep	eating trend in properties of elements acro	oss different periods in the periodic table.		
i.	Complete the	table below with the electron configuration	ns and blocks.		
		Group 2	Group 17 (7)		
		Ве	F		
Peri	od 2	1s ²	1s ²		
Dori	ad 2	Mg	CI		
Peri	oa s	1s ²	1s ²		
Bloc	:k				
ii.	Use your ans	wers to (i) to explain why electron configu	ration is an example of a periodic trend.	[3]	
iii.	Mg forms 2+ ions but C/ usually forms 1– ions in their reactions. Explain why.				
				[2]	

Magnesium reacts with oxygen in the air.					
Write the equation for this reaction.					
	[1]				
ne reaction between calcium and hydrochloric acid is a redox reaction.					
, , , , , , , , , , , , , , , , , , ,					
+ $2HCI(aq) \rightarrow CaCI_2(aq) + H_2(g)$ Equation 2.1					
Explain, in terms of electron transfer, why the reaction shown in equation 2.1 is a redox reaction.					
	[2]				
A student plans to add 0.0100 mol of Ca to 120 cm 3 of 0.100 mol dm $^{-3}$ HC/ (aq).					
When the student carries out this reaction, they are surprised that all the calcium reacts, despite bein excess of the HC/(aq).	g in				
 Show by calculation that calcium is in excess of the HC<i>I</i>(aq). Suggest a reason for this unexpected result. 					
	[3]				
s question is about acids and bases.					
lent reacts an excess of magnesium with 25.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid, HC <i>l</i> .					
tudent also reacts an excess of magnesium with 25.0 cm³ of 0.500 mol dm⁻³ ethanoic acid, CH₃COOH.					
Construct an ionic equation for the reaction of magnesium with an acid.					
	_[1]				
	write the equation for this reaction. the reaction between calcium and hydrochloric acid is a redox reaction. + 2HC/(aq) → CaC/₂(aq) + H₂(g) Equation 2.1 Explain, in terms of electron transfer, why the reaction shown in equation 2.1 is a redox reaction. A student plans to add 0.0100 mol of Ca to 120 cm³ of 0.100 mol dm⁻³ HC/ (aq). When the student carries out this reaction, they are surprised that all the calcium reacts, despite bein excess of the HC/(aq). • Show by calculation that calcium is in excess of the HC/(aq). • Suggest a reason for this unexpected result.				

[4]

ii. Explain wh	Explain why these two reactions of magnesium produce the same volume of gas but at different rates.					
			[3]			
3. This question is	s about energy changes.					
The first and seconoelow.	and ionisation energies of magnesium, N	lg, and strontium, Sr, in Group 2 are giv	en in the table			
Element	First ionisation energy / kJ mol ⁻¹	Second ionisation energy / kJ mol ⁻				
Mg	+738	+1451				
Sr	+550	+1064				
•	the first ionisation energy of Mg is greate the second ionisation energy of Sr is gre	er than the first ionisation energy of Sr. eater than the first ionisation energy of S	Sr.			

[1]

[2]

7 . Th	is question is about some elements in Period 3 and compounds they form.
A stu	dent adds a small piece of calcium to a beaker containing an excess of water.
i.	Construct the equation for the reaction and predict one observation that the student would make.
	Equation
	Observation
-	[2]
ii.	Suggest one difference that the student would observe in the reaction of barium with water compared to the reaction of calcium with water.
8(a).	This question is about the reactions of Group 2 metals and their compounds.
A stu	dent adds magnesium to dilute hydrochloric acid in one test tube.
The s	student adds calcium to dilute hydrochloric acid in a second test tube.
A red	lox reaction takes place in each test tube.

i.	Suggest two observations from the student's experiment that would show that calcium is more reactive
	than magnesium.

Write half-equations for the reaction of magnesium with hydrochloric acid. ii.

Oxidation half-equation: Reduction half-equation:

Formula of barium compound

	sample of barium oxide is added to distilled water at 25 °C. ourless solution forms containing barium hydroxide, Ba(OH) ₂ .
	solution is made up to 250.0 cm³ with distilled water. oH of this solution is 13.12.
i.	Determine the mass of barium oxide that was used.
	Give your answer to 3 significant figures.
	mass of barium oxide = g [5]
ii.	10 cm ³ of dilute sulfuric acid is added to 10 cm ³ of the colourless solution of Ba(OH) ₂ . Write an ionic equation, including state symbols, for the reaction.
	[1]
Q(a)	This question is about some Group 2 elements and their compounds.
	dent adds barium oxide, BaO, to water.
A rea	ction takes place forming a colourless solution.
i.	Predict the approximate pH of the colourless solution.
	pH =[1]
ii.	A student adds a few drops of dilute sulfuric acid to the colourless solution.
	Describe what the student would observe, and give the formula of the barium compound produced.
	Observation

(b). S	brondum and Calcium pour react with water.	
i.	Write an equation for the reaction of strontium with water.	
		[1]
ii.	Using oxidation numbers, explain why the reaction of strontium with water is a redox reaction.	
		[2]
iii.	Explain why calcium reacts more slowly with water than strontium does.	_
		LO.

END OF QUESTION PAPER